Another Carrington event?

I read a while back about the 1859 Carrington Event, found it most interesting.

So now we have new papers written up, as its being touted as possible that another similar event may take place.

This event is assumed to take place in 2020, as highlighted in bold in the following abstract.

It’s highly intriguing and very in depth, but a fantastic  read.

The long and the short of the paper is that the effect on Ozone would see a monstrous decrease in the Earths temperature.

Influence of a Carrington-like event on the atmospheric chemistry, temperature and dynamics

M. Calisto1, P. T. Verronen2, E. Rozanov3,4, and T. Peter4
1International Space Science Institute (ISSI), Bern, Switzerland
2Finnish Meteorological Institute, Helsinki, Finland
3Physical-Meteorological Observatory/World Radiation Center, Davos, Switzerland
4Institute for Atmospheric and Climate Science ETH, Zurich, Switzerland

Abstract. We have modeled the atmospheric impact of a major solar energetic particle event similar in intensity to what is thought of the Carrington Event of 1–2 September 1859. Ionization rates for the August 1972 solar proton event, which had an energy spectrum comparable to the Carrington Event, were scaled up in proportion to the fluence estimated for both events. We have assumed such an event to take place in the year 2020 in order to investigate the impact on the modern, near future atmosphere. Effects on atmospheric chemistry, temperature and dynamics were investigated using the 3-D Chemistry Climate Model SOCOL v2.0. We find significant responses of NOx, HOx, ozone, temperature and zonal wind. Ozone and NOxhave in common an unusually strong and long-lived response to this solar proton event. The model suggests a 3-fold increase of NOx generated in the upper stratosphere lasting until the end of November, and an up to 10-fold increase in upper mesospheric HOx. Due to the NOx and HOx enhancements, ozone reduces by up to 60–80% in the mesosphere during the days after the event, and by up to 20–40% in the middle stratosphere lasting for several months after the event. Total ozone is reduced by up to 20 DU in the Northern Hemisphere and up to 10 DU in the Southern Hemisphere. Free tropospheric and surface air temperatures show a significant cooling of more than 3 K and zonal winds change significantly by 3–5 m s−1 in the UTLS region. In conclusion, a solar proton event, if it took place in the near future with an intensity similar to that ascribed to of the Carrington Event of 1859, must be expected to have a major impact on atmospheric composition throughout the middle atmosphere, resulting in significant and persistent decrease in total ozone.

Final Revised Paper (PDF, 1740 KB)   Discussion Paper (ACPD)

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s